Achieve easy, fast and reliable particle/cell size analysis with NanoCuvette™ S

Introduction

Before we begin

We will send you the recording

Submit your questions anytime. We'll do Q&A in the end

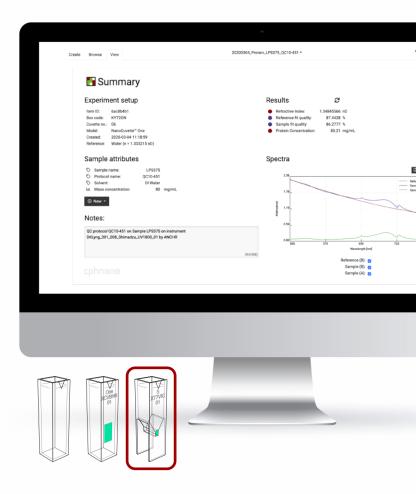
Contact us: webinar@avantorsciences.com

The speakers

Christopher Lüscher – Interim CEO, PhD

cphnano

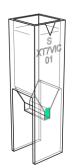
Sangita Khatri - Research Scientist


Achieve easy, fast and reliable particle size analysis with NanoCuvette™ S

Upgrade your existing spectrophotometer with NanoCuvette™ S and cloud computing - our take on affordable particle and cell size analysis.

cphnano.com

Hørmarken 2, 3520 Farum Denmark. Tel: +45 36 99 27 46 info@cphnano.com



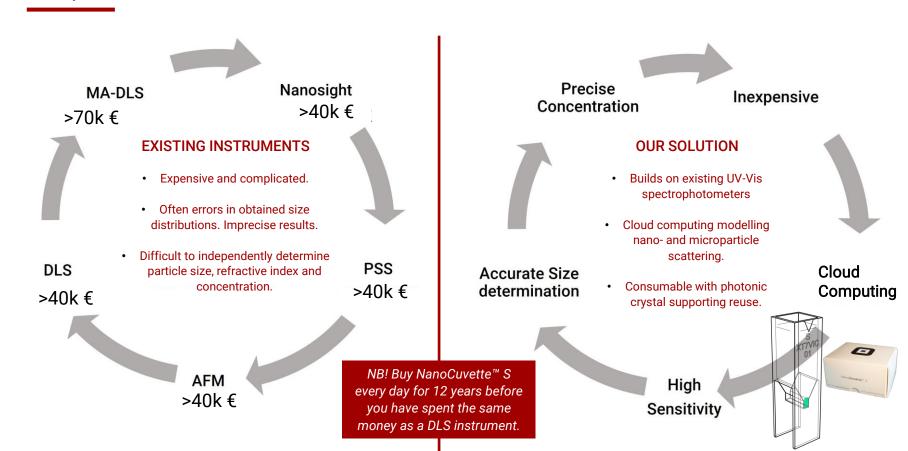
cphnano

OUTLINE

- About the company
- Absorption spectroscopy (Beer-Lambert law)
- VWR Collection spectrophotometers
- Particle Size Analysis
- NanoCuvette[™] S
- SpectroWorks[™]
- Conclusion

Sangita Khatri Research Scientist sakha@cphnano.com

Christopher Lüscher, PhD
Interim CEO
chrlu@cphnano.com

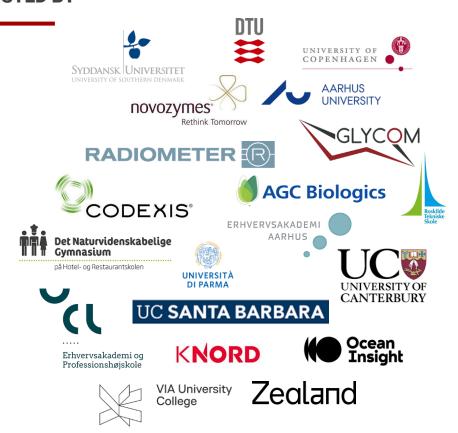


EASY, FAST AND RELIABLE PARTICLE SIZE ANALYSIS

Poll Question 1

Do you have a cuvette-based UV-Vis spectrophotometer in your lab?

ABOUT THE COMPANY



- Founded in 2015, cphnano is a Danish labtech company from Copenhagen that develops digital laboratory analysis and next-generation UV-Vis for the smart lab of the future.
- We work with upgrading UV-Vis spectrophotometry across all brands to be at the forefront at the technology development for the smart lab of the future and Industry 4.0.
- We sell consumables and digital upgrades for laboratory equipment through our trusted resellers and partners for an integrated, seamless digital experience.

Customers and partners of cphnano range from biotech and life science companies to manufacturers, R&D labs and SME's as well as education institutions and university laboratories.

PRODUCTS AND SERVICES

NanoCuvette[™] One and S (10 pcs.)

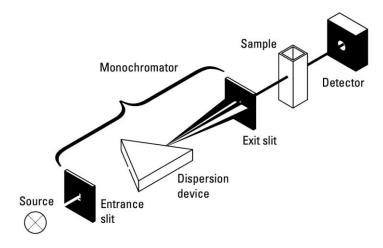
- Commodities
- Unique ID
- 8.5 mm and 15/20 mm versions
- Including SpectroWorks[™] full functionality

SpectroWorks™

- Online software for spectrophotometry
- License included with NanoCuvette™ purchase
- Supports basic plastic, quartz or glass cuvettes as well
- Includes instrument light simulations for better performance
- Drag and drop easy
- All future updates included

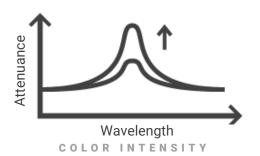
SpectroLink™

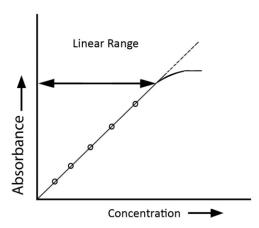
- Instrument control from smartphone, tablet or computer.
- Best possible data quality.
- No installation.


SpectroWorks™

THE SPECTROPHOTOMETER BUILT FOR MEASURING BEER-LAMBERT LAW

- Spectrophotometry is one of the most widely used analytical procedures in many labs.
- It is used to estimate the level of a substance in a solution and is ideal for simple routine determination of small quantities of materials such as DNA, RNA, proteins, enzymes and many other substances.




ABSORPTION SPECTROSCOPY AND THE BEER-LAMBERT LAW

The Beer-Lambert law relates the attenuation of light to the properties of the material through which the light is travelling:

$$A = \varepsilon c I + A_0$$

where A is the absorbance, ϵ is molar extinction coefficient, c is the concentration, I is the path length and A_0 is the background absorbance.

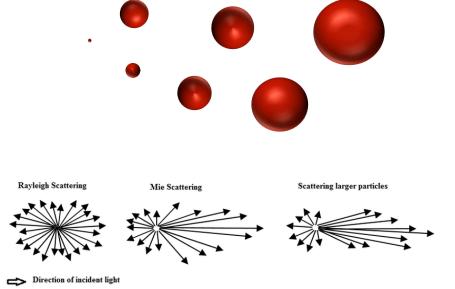
VWR SPECTROPHOTOMETER COLLECTION LINE-UP

Model	V-1200	UV1600-PC	3100-PC	6300-PC	M4	P4	PV4	
Туре	Scanning	Scanning	Scanning	Scanning	Scanning	Scanning	Scanning	
Wavelengths (nm)	325-1000	190-1100	190-1100	190-1100	190-1100	190-1100	190-1100	
Beam height (mm)	15	15	15	15	15	15	15	
Minimum spectral band width (nm)	4	4	2.0	1	2.0	2.0	2.0	
Wavelength accuracy (nm)	2.0	0.5	0.5	0.3	0.5	0.5	0.5	
Max scanning speed (nm/min)	4200	4200	3000	3000		4200	4200	
Connectivity interface	USB	USB	USB	USB	USB	USB	USB	
NanoCuvette™ compatible								

3100-PC

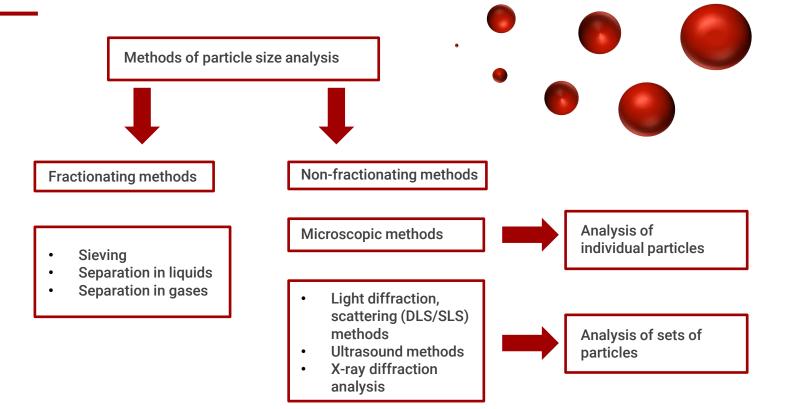
The M4 single split-beam spectrophotometer, with flashing xenon lamp, is an easy to use, highly

The P4 UV/Visible spectrophotometer is an easy to use instrument with advanced performance


Poll Question 2

Do you have particle size analysis equipment in your lab?

cphnano


INTRODUCTION TO PARTICLE SIZE ANALYSIS

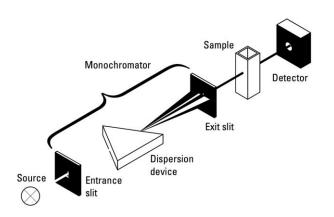
- Particle Size Analysis is the technical procedure to determine the list of values or a mathematical function that defines the relative amounts of particles dispersed in fluid sorted according to the size.
- Particle size influence the dissolution, absorption, stability, physical, chemical and pharmokinetic properties of particles.
- Particle Size Analyzers (PSA) are based on different technologies including analysis of Brownian motion, high-definition image processing and Rayleigh and Mie scattering.

cphnano

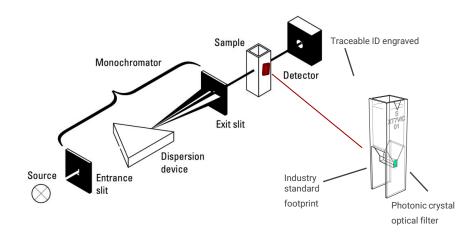
PARTICLE SIZE ANALYSIS METHODS

Poll Question 3

Can your instrument measure both the size and concentration at the same time?


One solution for particle size and concentration analysis

NanoCuvette™ S


THE NANOCUVETTE UNLOCKS THE FULL POTENTIAL OF THE SPECTROPHOTOMETER

Spectrophotometry is one of the most widely used analytical procedures in biochemistry.

Adding an optical filter to the cuvette upgrades the analytical capability of the instrument:

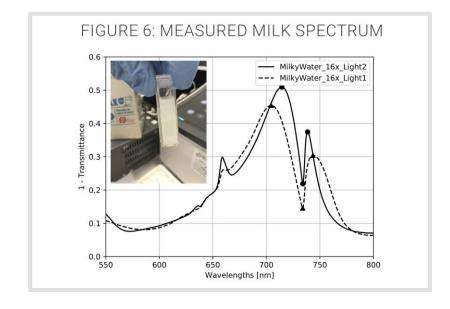
- More complementary information on same sample.
- Easy and fast measurement of particle size and concentration. Direct label-free size and concentration detection from 10 nm -10 μm.

MEASUREMENT PRINCIPLE - PHOTONIC CRYSTALS AND CLOUD COMPUTING

FIGURE 4: LIGHT SCATTERING

Small particle

Photonic Crystal

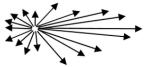

Rayleigh scattering

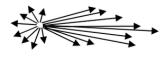
Particle and cell sizes can be measured, since light scattering depends on angle and wavelength.

Dynamic Light Scattering (DLS) measures scattering over time at given wavelength.

Multi Angle Dynamic Light Scattering (MA-DLS) measures scattering over time at given wavelength for different angles (Malvern ZetaSizer Ultra).

NanoCuvette™ S measures scattering at different wavelengths in different angles at given time.

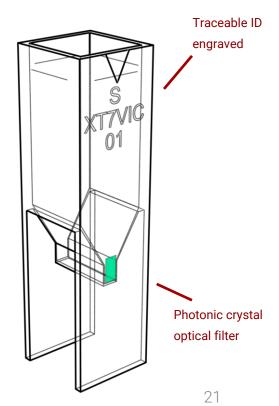



Large particle

Mie scattering

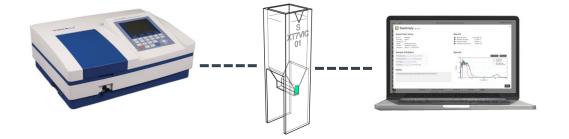
Mie Scattering

Scattering larger particles


- +500 million light simulations in SpectroWorks™.
- Rayleigh scattering (nanoparticles) and Mie scattering (microparticles) simulations accessed quickly with modern cloud computing architecture.
- · Side A, side B and side D SLS of the cuvette.
- +500 combinations of particle and fluid materials.

NANOCUVETTE™ S BENEFITS

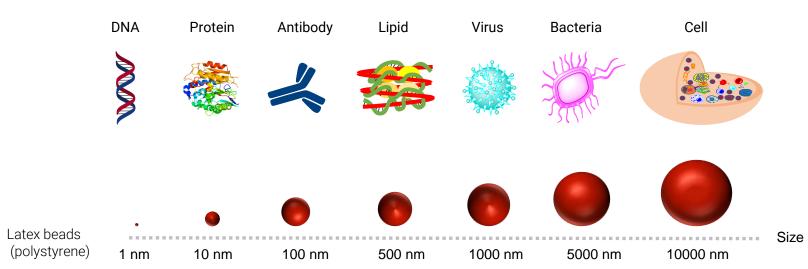
- Less sample needed for analysis. 50 μL 200 μL sample volume.
- Easy and fast measurement of size and concentration. Direct label-free size and concentration detection from 10 nm -10 μm (Limit of detection is below 0.003 % particle concentration determination).
- Replacing expensive equipment with just the spectrophotometer.
- Includes all basic cuvette features.



Poll Question 4

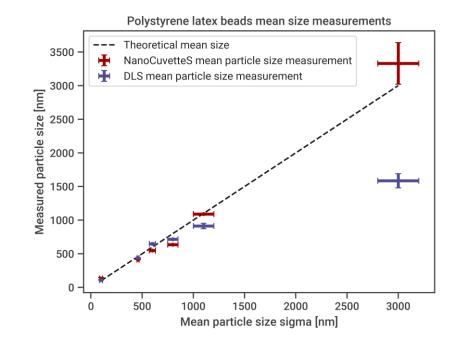
Which sample do you usually work with for particle size analysis?

VALIDATION OF NANOCUVETTE™ S BY PARTICLE ANALYTICAL



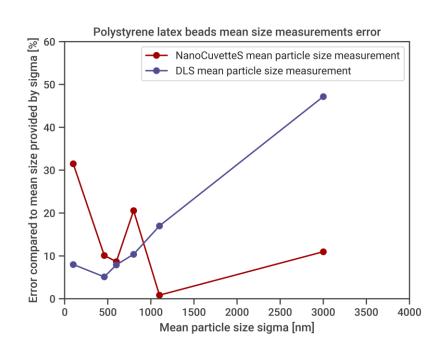
POLYSTYRENE BEADS AS AN INDUSTRY STANDARD REFERENCE SYSTEM

Validated by external partner


TEST AND VALIDATION IN REAL LIFE SETTINGS

- GLP Certified Particle analytical from Denmark has tested and validated the use of micro-NanoCuvette™ S and SpectroWorks™ using VWR UV6300-PC instrument.
- DLS was used for the reference instruments. DLS measurements were done by particle analytical using malvern zetasizer instrument.
- Mean particle size and concentration measurements of 6 different polystryerene latex beads were replicated for both of the instruments.

PARTICLE SIZE DISTRIBUTION I - NANOCUVETTE™ S COMPARED TO DLS



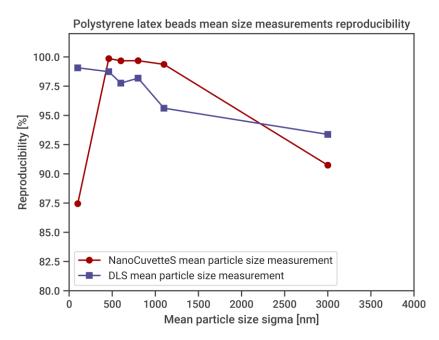
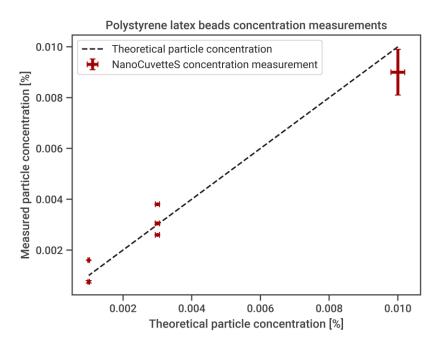
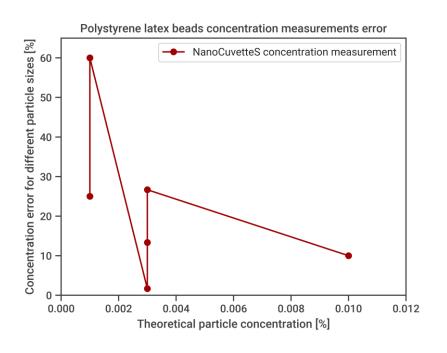

Size of Polystyr ene latex beads	PDI DLS		(D50, ni (% dev	particle size m) from DLS viation from andard)	Mean particle size (nm) NanoCuvette™ S and SpectroWorks™ together with UV-vis spectrophotometer (% deviation from standard)			
	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2		
100 nm	0.026	0.058	109 (9.0%)	107 (7.0%)	115.00 (15.0%)	148.90 (48.9%)		
460 nm	0.025	0.048	442 (3.9%)	431 (6.3%)	414.10 (10.0%)	413.04 (10.2%)		
600 nm	0.040	0.086	662 (10.3%)	633 (5.5%)	546.26 (9.0%)	549.85 (8.4%)		
800 nm	0.070	0.102	704 (12.0%)	730 (8.8%)	633.44 (20.8%)	637.50 (20.3%)		
1100n m	0.147	0.040	873 (20.6%)	953 (13.4%)	1097.66 (0.2%)	1083.85 (1.5%)		
3000 nm	0.365	0.334	1690 (43.7%)	1480 (50.7%)	3637.24 (21.4%)	3050.95 (1.9%)		

Table 1. Mean particle size (Vol.) of polystyrene latex beads measured by DLS and NanoCuvette™ S and SpectroWorks™ together with UV-Vis spectrophotometer *Data provided by Particle Analytical


PARTICLE SIZE DISTRIBUTION II - NANOCUVETTE™ S COMPARED TO DLS

PARTICLE CONCENTRATION ANALYSIS I - NANOCUVETTE™ S AND SPECTROWORKS™



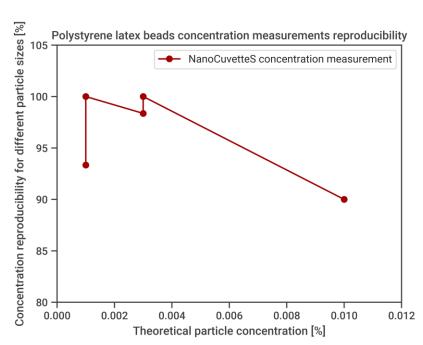

Sample name	Concentration (Vol.) Diluted from the stock	Concentration (Vol.) From NanoCuvette™ S and SpectroWorks™ together with UV- Vis spectrophotometer. Result (% deviation)				
		Run 1	Run 2			
Polystyrene Latex beads 100 nm	0.01%	0.0099% (1.0%)	0.0081% (19.0%)			
Polystyrene Latex beads 460 nm	0.003%	0.0038% (26.7%)	0.0038% (26.7%)			
Polystyrene Latex beads 600 nm	0.003%	0.0026% (13.3%)	0.0026% (13.3%)			
Polystyrene Latex beads 800 nm	0.003%	0.0030% (0.0%)	0.0031% (3.3%)			
Polystyrene Latex beads 1100nm	0.001%	0.0016% (60.0%)	0.0016% (60.0%)			
Polystyrene Latex beads 3000 nm	0.001%	0.0008% (20.0%)	0.0007% (30.0%)			

Table 2. Concentration of the diluted polystyrene latex beads obtained using NanoCuvette™ S and SpectroWorks™ together with UV-Vis spectrophotometer. *Data provided by Particle Analytical

PARTICLE CONCENTRATION ANALYSIS II - NANOCUVETTE™ S AND SPECTROWORKS™

PARTICLE SIZE ANALYSIS I - DYNAMIC LIGHT SCATTERING

CERTIFICATE OF ANALYSIS

CERTIFICATE OF ANALYSIS

Customer:

CphNano

Material tested:

Polystyrene Latex beads 100nm

Batch: 2021/07/23

Internal number:

32027

Analytical technique: Method of analysis:

Dynamic Light Scattering

Analyseplan Internal quality level: GMP

	D _{10%} (nm)**		D _{50%} (D _{50%} (nm)**		D _{90%} (nm)**		rage*	PI	DI*
Run 1	79	0.4	109		159		118		0.026	
Run 2	74	74.7		107		163		8.1	0.0	058
Average	76	.9	108		161		118.1		0.042	
Specification	-	-	-	-	-	-	-	-	-	-
Evaluation									40	

^{*}The parameter is based on the intensity size distribution

Written by: Auto Ludga for

Reviewed by:

2 8 JULI 2021 Date:

Approved by:

2 8 JULI 2021 Date:

Customer:

CphNano

Material tested:

Polystyrene Latex beads 460nm 2021/07/23

Batch:

Internal number:

32028

Analytical technique:

Dynamic Light Scattering Analyseplan

Method of analysis: Internal quality level: GMP

	D _{10%} (nm)**	D _{50%} (nm)**	D _{90%} (nm)**	Γ
Run 1	320	442	605	Г
D . 2	216	401	507	т

	D _{10%} (nm)~~	$D_{50\%} (nm)^{**} D_{90\%} (nm)^{**} Z-average^{**}$					PDI*		
Run 1	32	20	442 605		42	2.2	0.025			
Run 2	33	16	4	431		87	413.6		0.048	
Average	31	18	4	436		597		417.9		037
Specification	-	-	-	-	-	-	-	-	-	-
Evaluation	-		-			-		-		-

^{*}The parameter is based on the intensity size distribution

2 8 JULI 2021

2 8 JULI 2021

2 8 JULI 2021 Date:

2 8 JULI 2021

Date:

Conclusion: NanoCuvette™ S with developed software outperforms DLS.

^{**}The parameter is based on the volume size distribution

^{**}The parameter is based on the volume size distribution

PARTICLE SIZE ANALYSIS II - DYNAMIC LIGHT SCATTERING

CERTIFICATE OF ANALYSIS

Customer:

CphNano

Material tested:

Polystyrene Latex beads 600nm

Batch:

2021/07/23

Internal number:

32029

Analytical technique:

Dynamic Light Scattering

Method of analysis: Analyseplan

Internal quality level: GMP

	D _{10%} (nm)**			nm)**	D _{90%} (nm)**	Z-ave	rage*	PDI*		
Run 1	44	19	662		9.	48	56	9.5	0.04		
Run 2	47	70	6.	633		831		6.4	0.086		
Average	462		646		899		582.9		0.063		
Specification	-	-	-	-	-	-	-	-	-	-	
Evaluation	-0		-		-		-		-		

^{*}The parameter is based on the intensity size distribution

Written by: But dulyo for

Reviewed by: Wender U

Approved by: Wenter Way

Date: 2 8 JULI 2021

2 8 JULI 2021 Date:

2 8 JULI 2021 Date:

CERTIFICATE OF ANALYSIS

Customer:

CphNano

Material tested: Polystyrene Latex beads 800nm

Batch: Internal number: 2021/07/23 32030

Analytical technique:

Dynamic Light Scattering

Method of analysis: Ana Internal quality level: GM

Analyseplan GMP

	D _{10%} (nm)**	D _{50%}	D _{50%} (nm)**		(nm)**	Z-ave	rage*	PDI*		
Run 1	49	96	7	704		948		621.9		07	
Run 2	55	52	7.	730		944		684.9		102	
Average	52	29	7	718		946		653.4		086	
Specification	-	-	-	-	-	-	-	-	-	-	
Evaluation	-		-		-		-		-		

^{*}The parameter is based on the intensity size distribution

Written by: But huyo for

Date: 2 8 JULI 2021

Reviewed by: \ \

Date: 2 8 JULI 2021

Approved by: Wenho Wan

2 8 JULI 2021 Date:

^{**}The parameter is based on the volume size distribution

^{**}The parameter is based on the volume size distribution

PARTICLE SIZE ANALYSIS III - DYNAMIC LIGHT SCATTERING

CERTIFICATE OF ANALYSIS

Customer: CphNano

Material tested: Polystyrene Latex beads 3000nm

Batch: 2021/07/23

Internal number: 32032

Analytical technique: Dynamic Light Scattering

Method of analysis: Analyseplan
Internal quality level: GMP

	D _{10%} (nm)**		D _{50%} (nm)**	D _{90%} (nm)**	Z-ave	rage*	PDI*		
Run 1	1040 1150 1110		16	90	40	30	26	98	0.365		
Run 2			14	80	22	90	27	56	0.334		
Average			1550		3570		2727		0.349		
Specification		-	-	-	-	-	-	-	-	-	
Evaluation	-		-		-		-		-		

^{*}The parameter is based on the intensity size distribution

tten by: But during far- Date: 28 JULI 2021

Reviewed by: 1)000 Date: 2 8 JULI 2021

Approved by: Wendo Way Date: 2 8 JULI 2021

CERTIFICATE OF ANALYSIS

Customer: CphNano

Material tested: Polystyrene Latex beads 1100nm

Batch: 2021/07/23 Internal number: 32031

Analytical technique: Dynamic Light Scattering

Method of analysis: Analyseplan
Internal quality level: GMP

	D _{10%} (nm)**	D _{50%} (nm)**		D _{90%} (nm)**		Z-ave	rage*	PDI*	
Run 1	52	27	87	873		1250		789.6		147
Run 2	73	36	95	53	1230		873.5		0.04	
Average	62	20	922		1240		831.5		0.093	
Specification	-	-	-	-	-	-	-	-	-	-
Evaluation	-		-		-			-	-	

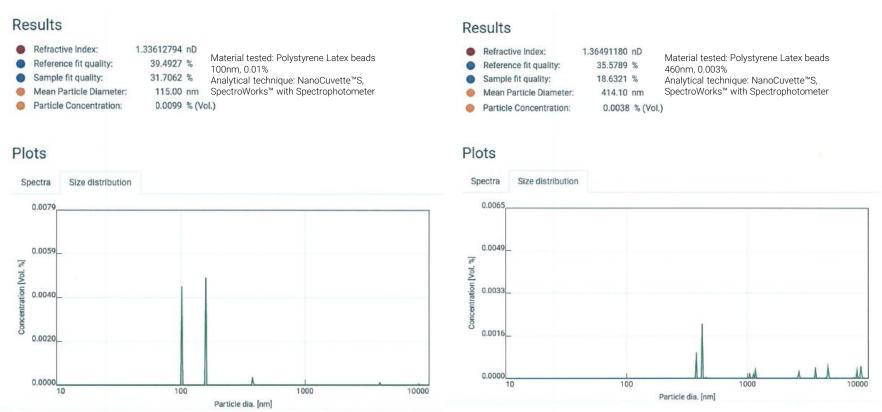
 $^{{}^*\}mathit{The}$ parameter is based on the intensity size distribution

a by: But duma 1 Date: 28 JULI 2021

wed by: \\\\) Date: 2 8 JULI 2021

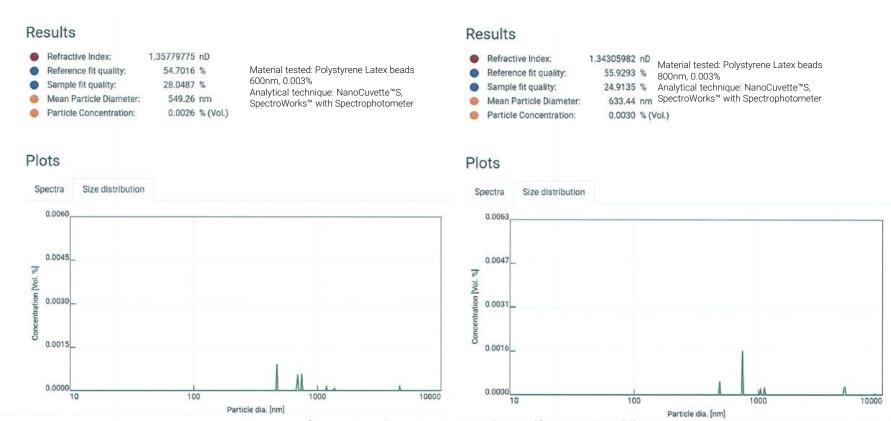
proved by: Newbo Way Date: 2 8 JULI 2021

The validity of the method is the responsibility of the sponsor Quality agreement not in place


Conclusion: NanoCuvette™ S with developed software outperforms DLS.

^{**}The parameter is based on the volume size distribution

^{**}The parameter is based on the volume size distribution



PARTICLE SIZE ANALYSIS I - NANOCUVETTE ™ S AND SPECTROWORKS ™

PARTICLE SIZE ANALYSIS I - NANOCUVETTE ™ S AND SPECTROWORKS ™

Screenshots from developed software (SpectroWorks™)

PARTICLE SIZE ANALYSIS I - NANOCUVETTE ™ S AND SPECTROWORKS ™

Results

Refractive Index: Reference fit quality: N/A N/A

Material tested: Polystyrene Latex beads 110nm. 0.001%

Sample fit quality: Mean Particle Diameter: Particle Concentration:

N/A 1097.66 nm

0.0016 % (Vol.)

Analytical technique: NanoCuvette™S, SpectroWorks™ with Spectrophotometer

Results

Refractive Index:

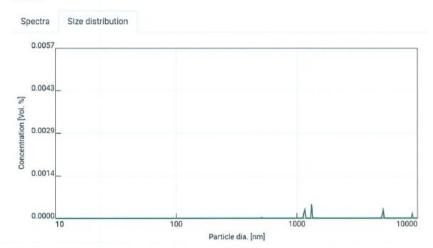
Reference fit quality:

Particle Concentration:

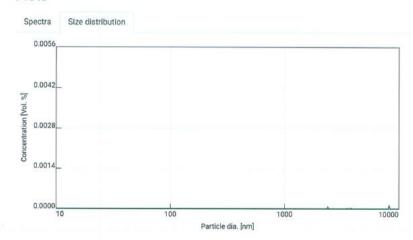
Sample fit quality:

1.57637491 nD

Material tested: Polystyrene Latex beads


3000nm, 0.001% 35.7368 %

Analytical technique: NanoCuvette™S, 59.9385 % SpectroWorks™ with Spectrophotometer


Mean Particle Diameter: 3050.95 nm

0.0007 % (Vol.)

Plots

Plots

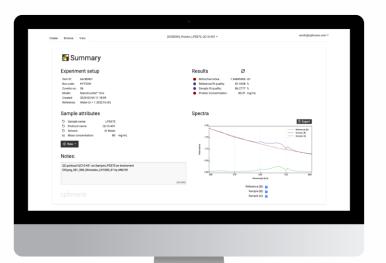
Poll Question 5

Do you use any cloud-based software for your lab analysis? Or do you use any programming language like python and MATLAB to interpret/analyze your data?

Upgrade your spectrophotometer with software

SpectroWorks™

THE FUTURE OF UV-VIS LABWORK IS HERE.


OOO Drag-and-drop easy data processing

Analysis in seconds

One-click export for reporting

Optimize and automate your UV-Vis instrument workflow.

Online now.

SpectroWorks™

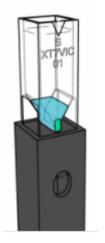
Upgrade your spectrophotometer with NanoCuvette™ S

Conclusion

WHAT'S IN IT FOR YOU?

- Realiable accurate results.
- Works with existing UV-Vis spectrophotometers in the lab.
- No download of software with always updated online software platform.
- Cuvettes can be reused check cuvette fit quality in SpectroWorks™.
- No extensive expertise needed for operation.
- Less time wasted.
- Low up-front cost.

NB! Buy NanoCuvette™ S every day for 12 years before you have spent the same money as a DLS instrument.


BENEFITS FROM VWR COLLABORATION

- VWR/Avantor's UV-Vis spectrophorometer now supports particle size and concentration measurements.
- You can order cuvettes with our lab supplies.
- Standard lab purchasement contracts can be used.
- Data sheet, technical briefs, instruction briefs and knowledge base publicly available (https://knowledge.cphnano.com/).
- Shipping across Europe.
- Fits into the exsting laboratory routines.

WHY CHOOSE US?

Supports Your Hardware

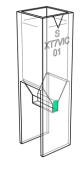
NanoCuvette™ One works with your existing UV-Vis spectrophotometer.

Accurate and Instant Results

Results are calculated based on spectral analysis in less than 5 seconds.

Designed For Humans

Easy to use with no special training required. Online support included.


Unique Traceability

First in the industry, each cuvette is marked for traceability and access to online calibration data.

cphnano

NanoCuvette™ S

Sangita Khatri Research Scientist sakha@cphnano.com

Christopher Lüscher, PhD Interim CEO chrlu@cphnano.com

Achieve easy, fast and reliable particle size analysis with NanoCuvette™ S

Thank you!

Conclusions

You will receive an email with the link of the recording

You can listen to the recording of this presentation whenever you wish.

On the home page on VWR.com, select Events section, then enter the Webinars subsection.

You will receive a certificate of attendance 24 hours after the session.

If you need any technical information or for any other topic please write to webinar@avantorsciences.com

Thank you Questions?

Webinar@avantorsciences.com

Get your standard pack of 10 NanoCuvette™ S by ordering.

